
BigVAR User’s Guide

Dimension Reduction Procedures for Multivariate Time Series

William Nicholson

wbn8@cornell.edu

September 25, 2015

1 Overview

The R package BigVAR allows for the simultaneous estimation of high-dimensional time series by applying structured penalties

to the conventional vector autoregression (VAR) and vector autoregression with exogenous variables (VARX) frameworks.

Our methods can be utilized in many applications that make use of time-dependent data, such as macroeconomics, finance,

and internet traffic.

Our package adapts solution algorithms from the regularization literature to a multivariate time series setting, allowing

for the computationally efficient estimation of high-dimensional VARs with the option to additionally incorporate unmodeled

exogenous series.

The conventional VAR and VARX are heavily overparameterized, often forcing practitioners to arbitrarily specify a

reduced subset of series to model. BigVAR allows for the incorporation of many potentially useful series by imposing zero

restrictions in a data-driven manner. Moreover, if forecasts are only desired from a subset of included series, using the VARX-

L framework (Nicholson et al. [2015]), BigVAR can effectively leverage the information from the unmodeled exogenous series

to improve the forecasts of the modeled endogenous series. We additionally offer a class of Hierarchical Vector Autoregression

(HVAR) procedures (Nicholson et al. [2014]) that address the issue of lag order selection in VAR models.

This document presents a brief overview of our notation, the models that comprise BigVAR, and the functionality of the

package. For more detail, we refer you to the original papers. Section 2 provides a brief overview of the notation, the VARX-L

penalties presented in Nicholson et al. [2015] and the HVAR methodology detailed in Nicholson et al. [2014], and Section 3

details practical implementation of BigVAR with a macroeconomic data example.

If you have questions about the package’s functionality or feature requests, please feel free to contact me at wbn8@cornell.edu.

1

mailto:wbn8@cornell.edu
mailto:wbn8@cornell.edu


2 Notation and Overview of BigVAR Procedures

Let {yt}Tt=1 denote a k dimensional vector time series and {xt}Tt=1 denote an m-dimensional unmodeled exogenous series. A

vector autoregression with exogenous variables of order (p,s) (VARk,m(p, s)) can be expressed as

yt = ν +

p∑
`=1

Φ(`)yt−` +

s∑
j=1

β(j)xt−j + ut for t = 1, . . . , T, (1)

in which

• ν denotes a k × 1 intercept vector

• each Φ(`) represents a k × k endogenous (modeled) coefficient matrix

• each β(j) represents a k ×m exogenous (unmodeled) coefficient matrix

• ut
wn∼ (0,Σu) (Σu is nonsingular, but left unspecified)

Note the the VAR is a special case of Equation 1 in which m = s = 0.

Provided k,m, s, and p are small relative to T , one can estimate a VARXk,m(p, s) at time t by least squares via

min
ν,Φ,β

‖yt − ν −
p∑
`=1

Φ(`)yt−` −
s∑
j=1

β(j)xt−j‖22, (2)

in which Φ = [Φ(1), . . . ,Φ(p)], β = [β(1), . . . ,β(s)].

2.1 The VARX-L Framework

To reduce the parameter space of the VARX we consider applying structured convex penalties to Equation (2), resulting in

the objective

min
ν,Φ,β

T∑
t=1

‖yt − ν −
p∑
`=1

Φ(`)yt−` −
s∑
j=1

β(j)xt−j‖22 + λ

(
Py(Φ) + Px(β)

)
, (3)

in which

• λ ≥ 0 is a penalty parameter estimated by cross-validation

• Py(Φ) represents the group penalty structure on endogenous coefficients

• Px(β) represents the group penalty structure on endogenous coefficients.

These penalties impose structured sparsity based upon a partition of the parameter space that takes into account the

intrinsic structure of the VAR. All VARX-L penalty structures are detailed in Table 1 and plots of example sparsity patterns

are depicted in Figure 1.

2



Lag Group VARX−L

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) β(1) β(2) β(3)

Own/Other VARX−L

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) β(1) β(2) β(3)

Lag Sparse VARX−L

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) β(1) β(2) β(3)

O/O Sparse Group VARX−L

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) β(1) β(2) β(3)

Basic VARX−L

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) β(1) β(2) β(3)

Endogenous−First VARX−L

Φ(1) Φ(2) Φ(3) Φ(4) β(1) β(2) β(3) β(4)

Figure 1: VARX-L Example Sparsity Patterns (k=3, p=5))

Table 1: VARX-L Penalty Functions (Reproduced from Nicholson et al. [2015]). Note that Φ(`)
on and Φ

(`)
off denote the diagonal

and off-diagonal elements of coefficient matrix Φ(`), respectively.

Group Name Py(Φ) Px(β)

(4) Lag
√
k2
∑p

`=1 ‖Φ
(`)‖2

√
k
∑s

j=1

∑m
i=1 ‖β

(j)
·,i ‖2

(5) Own/Other
√
k
∑p

`=1 ||Φ
(`)
on ||2 +

√
k(k − 1)

∑p
`=1 ||Φ

(`)
off ||2

√
k
∑s

j=1

∑m
i=1 ‖β

(j)
·,i ‖2

(6) Sparse Lag (1− α)
√
k2
∑p

`=1 ‖Φ
(`)‖2 + α‖Φ‖1 (1− α)

√
k
∑s

j=1

∑m
i=1 ‖β

(j)
·,i ‖2 +α‖β‖1

(7) Sparse Own/Other (1− α)
(√
k
∑p

`=1 ||Φ
(`)
on ||2 +

√
k(k − 1)

∑p
`=1 ||Φ

(`)
off ||2

)
+ α‖Φ‖1 (1− α)

√
k
∑s

j=1

∑m
i=1 ‖β

(j)
·,i ‖2 +α‖β‖1

(8) Basic ‖Φ‖1 ‖β‖1

(9) Endogenous-First Py,x(Φ,β) =
∑p

`=1

∑k
j=1

(
‖[Φ(`)

j,· ,β
(`)
j,· ]‖2 + ‖β(`)

j,· ‖F
)

Note that groups are weighted by their cardinality to prevent regularization favor larger groups. Each class of model is

described in detail in the following sections.

Group Lasso Penalties

The Group Lasso (Yuan and Lin [2006]) has emerged as a popular penalized regression procedure that can take into account

the inherent structure of a multivariate time series. We consider two group structures for the endogenous covariates: a lag

based grouping (Lag Group VARX-L, Equation 4) and a grouping that distinguishes between a series’ own lags (diagonal

3



entries of Φ(`)) and those of other series (off diagonal entries of Φ(`)) (Own/Other Group VARX-L, Equation 5).

Though both penalties employ the same solution algorithm, since the groupings under the Lag Group VARX-L are

proper submatrices, it is possible to directly solve the matrix optimization problem as opposed to performing a least squares

transformation, resulting in a substantially lower computational overhead than the Own/Other Scenario.

Under both endogenous structures, we group exogenous variables by column. In our experience, we have found that

assigning each exogenous covariate to its own group substantially increases computation time without an improvement in

forecasts and a lag-based grouping is too general. Hence, the column-based grouping serves as a compromise; allowing for

flexibility while still resulting in a computationally efficient optimization problem. In economic or financial applications, one

may wish to consider segmentized groupings by sector or economy, akin to that proposed by Song and Bickel [2011]. We plan

to enable user-specified groupings in future updates of BigVAR .

Sparse Group Lasso Penalties

In certain scenarios, a group penalty can be too restrictive. If a group is included, all of its coefficients are constrained to be

nonzero. On the other hand, specifying a large number of groups will substantially increase computation time and, in our

experience, generally does not improve forecasting performance.

As a compromise, we consider applying a Sparse Group Lasso penalty (Equations 6 and 7) proposed by Simon et al.

[2013], which allows for “within-group” sparsity via a convex combination of L1(unstructured sparsity) and L2 (structured

sparsity) penalties. BigVAR offers the Sparse Group VARX-L for both the Lag and Own/Other structured groupings.

The parameter that controls the weights of the two penalties, α, is set to 1
k+1 according to a heuristic to control within-

group sparsity. In future updates, we plan to enable the option to jointly estimate α and λ by cross-validation.

Basic Penalty

The Basic VARX-L (8) is the most general grouping, which can be viewed as partitioning each variable into its own group. It

does not incorporate any of the structure of the VARX, but it results in a comparably simpler optimization problem, hence

it can scale to much larger problems than structured approaches.

Nested Penalty Structures

The previously discussed penalty structures are disjoint groupings that form a partition of [Φ,β]. In certain scenarios,

one might wish to assign a preference to endogenous versus exogenous variables. The Endogenous-First Group Lasso (9)

utilizes a nested penalty to prioritize endogenous series. At a given lag, an exogenous series can enter the model only if their

endogenous counterpart is nonzero. Note that by construction, this penalty requires that p ≥ s.

Solution Methods

In order to solve the optimization problems in the form of Equation (3), we employ computationally tractable algorithms

designed for non-smooth convex functions. Our solution methods do not make calls to external packages or commercial convex

optimization solvers. All of our solution algorithms are coded in C++ and linked to R via Rcpp Eddelbuettel and François

4



[2011], RcppArmadillo Eddelbuettel and Sanderson [2014], and RcppEigen Bates et al. [2012]. The specific algorithms that

we utilize for each procedure are outlined in Table 2.

Table 2: Solution Algorithms employed for each structured penalty

Algorithm Solution Procedure Reference

Lag Group Lasso Block Coordinate Descent Qin et al. [2010]

Own/Other Group Lasso Block Coordinate Descent .

Lag Sparse Group Lasso Proximal Gradient Descent Beck and Teboulle [2009]

O/O Sparse Group Lasso Proximal Gradient Descent .

Lasso Coordinate Descent Friedman et al. [2010]

Endogenous-First VARX Fast Iterative Soft Thresholding Jenatton et al. [2011]

Implementation details are provided in the Appendix of Nicholson et al. [2015].

2.2 Hierarchical Vector Autoregression

The VARX-L procedures remain agnostic with regard to lag order selection. Hence, as the maximum lag order increases,

forecast performance may start to degrade, as each group is treated democratically despite more distant data generally

tending to be less useful in forecasting. Within the VAR context, we propose the HVAR class of models which alleviates

this issue by embedding lag order into hierarchical group lasso penalties. To allow for greater flexibility, intead of imposing

a single, universal lag order, it is allowed to vary across marginal models. BigVAR provides three hierarchical penalties:

1. Componentwise HVAR

Maximum lag order can vary across marginal models, but within a series, all components have the same maximum lag.

Py(Φ) =

k∑
i=1

p∑
`=1

‖Φ(`:p)
i ‖2

2. Own/Other HVAR This structure is similar to Componentwise, but imposes an additional layer of hierarchy: pri-

oritizing “own” lags over “other” lags within a lag. This penalty incorporates a commonly-used specification in the

Bayesian VAR with a Minnesota Prior (Litterman [1979]) that own lags are more informative than other lags.

Py(Φ) =

k∑
i=1

p∑
`=1

[
‖Φ(`:p)

i ‖2 + ‖(Φ(`)
i,−i,Φ

([`+1]:p)
i )‖2

]

3. Elementwise HVAR

The most general structure; in each marginal model, each series may have its own maximum lag. Under this framework,

there are k2 possible lag orders.

Py(Φ) =

k∑
i=1

k∑
j=1

p∑
`=1

‖Φ(`:p)
ij ‖2

5



In addition, for comparison purposes we provide a Lag Weighted Lasso, which consists of a Lasso penalty that increases

geometrically with lag,

Py(Φ) =

p∑
`=1

`γ‖Φ(`)‖1,

in which γ ∈ [0, 1] is an additional tuning parameter. This is similar to the approach proposed by Song and Bickel [2011].

Though it encourages greater regularization at more distant lags, it does not explicitly force sparsity and requires the speci-

fication of an arbitrary functional form as well as an additional tuning parameter.

Example Sparsity Patterms of the HVAR Procedures and the lag-weighted lasso are depicted in Figure 2.

Componentwise HVAR

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

Own/Other HVAR

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

Elementwise HVAR

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

Lag−Weighted Lasso

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

Figure 2: HVAR and Lag-Weighted Lasso Example Sparsity Patterns (k=3,p=5)

2.3 Penalty Parameter Selection

In order to account for time dependence, cross-validation is conducted in a rolling manner. We perform cross validation

between times T1 and T2 (by default, BigVAR sets T1 =
⌊
T
3

⌋
, T2 =

⌊
2T
3

⌋
). λ̂ is selected from a grid of values λ1, . . . , λn. At

T1, we forecast ŷλi

T1+1 for i = 1, . . . , n, and sequentially add observations until time T2. We choose λ̂ as the minimizer of

MSFE:

MSFE(λi) =
1

(T2 − T1 − 1)

T2−1∑
t=T1

‖ŷλi
t+1 − yt+1‖22.

T2 + 1 through T is used for out of sample forecast evaluation. The process is visualized in the Figure 3.

6



.

Figure 3: (Reproduced from Nicholson et al. [2015]) Illustration of Rolling Cross-Validation

3 Estimating VAR models with BigVAR

In this section, we demonstrate how to utilize BigVAR to forecast a set of quarterly macroeconomic indicators procured from

Quandl. We consider forecasting three US macroeconomic series: Consumer Price Index, Federal Funds Rate, and Gross

Domestic Product. We first download the data using the API provided in the Quandl package and then transform each series

to stationarity, via the transformation codes provided by Stock and Watson [2005]

library(devtools)

if (!require(Quandl)) {
install_github("quandl/R-package")

}
# to install BigVAR from Github

if (!require(BigVAR)) {
install_github("wbnicholson/BigVAR/BigVAR")

}
suppressPackageStartupMessages(library(Quandl))

# Gross Domestic Product (Relative to 2000)

GDP = Quandl("FRED/GDP", type = "xts")

GDP <- GDP/mean(GDP["2000"]) * 100

# Transformation Code: First Difference of Logged Variables

GDP <- diff(log(GDP))

# Federal Funds Rate

FFR = Quandl("FRED/FEDFUNDS", type = "xts", collapse = "quarterly")

# Transformation Code: First Difference

FFR <- diff(FFR)

# CPI ALL URBAN CONSUMERS, relative to 1983

CPI = Quandl("FRED/CPIAUCSL", type = "xts", collapse = "quarterly")

CPI <- CPI/mean(CPI["1983"]) * 100

# Transformation code: Second difference of logged variables

CPI <- diff(log(CPI), 2)

GDP and CPI start in Quarter 1 of 1947, but since the Federal Funds Rate was not officially published until 1954, we

discard all realizations of GDP and CPI before Quarter 4 of 1954. The data ranges until Quarter 1 of 2015, resulting in

T = 243. As is standard in the regularization framework, before estimation we standardize each series to have zero mean

and unit variance.

k = 3

Y <- cbind(CPI, FFR, GDP)

Y <- na.omit(Y)

# Demean

Y <- Y - (c(rep(1, nrow(Y)))) %*% t(c(apply(Y, 2, mean)))

# Standarize Variance

for (i in 1:k) {
Y[, i] <- Y[, i]/apply(Y, 2, sd)[i]

}
# Plot

7



−3
−2

−1
0

1
2

3
4

GD
P

−6
−4

−2
0

2
4

6

FF
R

1960 1970 1980 1990 2000 2010

−2
0

2
4

CP
I

Figure 4: Plots of Standardized Quarterly GDP, Federal Funds Rate, and CPI

plot(as.zoo(Y), main = "", xlab = "", ylab = c("GDP", "FFR", "CPI"))

3.1 Constructing an object of class BigVAR

In an effort to streamline functionality, BigVAR utilizes R’s s4 object class system. In order to fit a model, the user constructs

an object of class BigVAR that contains the data as well as model specifications. A BigVAR object can be created through the

wrapper function constructModel, which encompasses both HVAR and VARX-L implementation. For example, if we wish

to construct an Own/Other Group Lasso VAR3(4)

Model1 = constructModel(as.matrix(Y), p = 4, struct = "Diag", gran = c(25, 10),

verbose = FALSE, VARX = list())

The required arguments for constructModel are

• Y: T × k multivariate time series (in matrix form)

• p: predetermined maximum lag order

• struct: Structured Penalty

• gran: Two arguments that characterize the grid of penalty parameters. The first denotes the depth of the grid and the

second the number of gridpoints.

The choices for the argument struct are outlined in Table 2. In the BigVAR framework, gran denotes the only “hyperparam-

eter” that must be set by the end user. Following Friedman et al. [2010], the grid of penalty values is constructed by starting

8



with the smallest value in which all coefficients will be zero, then decrementing in log linear increments. The grid ends at a

fraction of this maximum value (as dictated by the first argument in gran). These bounds are detailed in the Appendix of

Nicholson et al. [2015]. In practice these bounds can be coarse. Therefore, we implement a variant of Algorithm 3 in Lou

et al. [2014], which uses a bisection approach in order to find a tighter data-driven bound. In practice, we find that the best

choices for grid depth tend to be between 10 and 50, depending on the number of series included.

The number of penalty parameters is also left to user input. The package glmnet calls for 100 penalty parameters by

default, but we have found no substantial forecasting improvement in considering any more than 10. If the user wishes to

provide their own penalty parameters, they can do so through gran, but they must also set the optional argument ownlambdas

to TRUE.

The additional optional arguments are

• RVAR: Relaxed VAR indicator (provides the option to refit the support recovered by least squares) (default: FALSE)

• h: forecast horizon (default 1)

• crossval: Cross-Validation Procedure (default “rolling”)

• MN: Option for the “Minnesota VAR(X),” which shrinks toward a vector random walk.

• verbose: Indicator for progress bar (default TRUE)

• IC: Indicator to return AIC and BIC benchmarks (default TRUE)

• VARX: List of VARX specifications

• T1: Start of cross validation period (default bT3 c)

• T2: Start of forecast evaluation period (default b 2T
3 c)

• ONESE: Indicator for “One Standard Error” heuristic described in Hastie et al. [2009] that returns the most sparse

solution within one standard error of the best performing result (default FALSE)

More details on some of the optional arguments are provided below

Relaxed VAR

Since the Lasso and its structured variants are known to shrink nonzero coefficients, they are often used for variable selection,

with the resulting model being refit via least squares (Meinshausen [2007]). This procedure is known as the Relaxed VAR.

We offer this capability in BigVAR, and to ensure that the resulting coefficient matrices are numerically stable, we utilize

a variant of the least squares procedure developed by Neumaier and Schneider [2001], which adds a small ridge penalty (on

the order of εMachine).

We have found that refitting generally does not improve forecasts. This could be due in part to the observation by

Lütkepohl [2005], that in the presence of parameter restrictions, the Ordinary Least Squares and Generalized Least Squares

estimators no longer coincide.

9



Cross-Validation Choices

By default, BigVAR implements rolling cross-validation. An alternative procedure, H-block cross-validation (Burman et al.

[1994]), also respects time dependence and could be considered in future updates of BigVAR . In our context, H-block

cross validation essentially involves, at each timepoint, removing from the training set max(p, s) observations preceding and

following the “test” observation. In our applications, we have found that the use of h-block cross validation does not improve

forecasts, but is substantially more computationally intensive than the rolling approach.

The Minnesota Lasso

As opposed to shrinking every coefficient toward zero, all of the procedures in BigVAR can be modified to instead shrink

toward a vector random walk (i.e. Φ(1) = Ik, all other coefficient matrices are still set to zero). Such a modification is akin to

the Bayesian VAR with Minnesota Prior of Litterman [1979]. This approach can be useful in scenarios exhibiting evidence

of nonstationarity, which is commonplace in macroeconomic data. For more information about this approach, see Nicholson

et al. [2015]

Information Criterion Benchmarks

By default, we compare our methods to the more conventional approach of selecting from a sequentially increasing lag order

as chosen by AIC or BIC and fitting the resulting VAR by least squares. Due to poor numerical stability as well as substantial

computational overhead, we don’t recommend including this benchmark when working in high dimensions (i.e. kp ≈ T ),

hence we offer the option to disable it.

3.2 Implementation

In order to estimate a model with BigVAR using rolling cross validation, we simply need to execute the command cv.BigVAR

on an object of class BigVAR as detailed below.

To fit an Own/Other Group VAR3(4), we simply run

Model1 = constructModel(as.matrix(Y), p = 4, struct = "Diag", gran = c(25, 10),

verbose = F, VARX = list())

Model1Results = cv.BigVAR(Model1)

Model1Results

## *** BIGVAR MODEL Results ***

## Structure

## [1] "Diag"

## Maximum Lag Order

## [1] 4

## Optimal Lambda

## [1] 16.9702

## Grid Depth

## [1] 25

## Index of Optimal Lambda

## [1] 6

## In-Sample MSFE

## [1] 3.826

10



## BigVAR Out of Sample MSFE

## [1] 1.085

## *** Benchmark Results ***

## Conditional Mean Out of Sample MSFE

## [1] 1.824

## AIC Out of Sample MSFE

## [1] 1.106

## BIC Out of Sample MSFE

## [1] 1.128

## RW Out of Sample MSFE

## [1] 1.14

An object of class BigVAR.Results is returned. By default, the output displays model characteristics, such as the penalty

structure, maximum lag order, the λ chosen, and both in sample and out of sample MSFE. For comparison purposes, the

out of sample MSFE from benchmarks including sample mean, random walk, AIC, and BIC are also returned.

Additional information available in Model1Results includes

# Coefficient matrix at end of evaluation period

Model1Results@betaPred

# Residuals at end of evaluation period

Model1Results@resids

# Lagged Values at end of evaluation period

Model1Results@Zvals

Diagnostics and Additional Features

As most of BigVAR is automated, there is generally little in the way of diagnostics is required. This section details the

features of BigVAR that both tailor to the specific forecasting scenarios of the end-user and ensure that the most accurate

possible forecasts are delivered.

3.2.1 Penalty Grid Position

plot.BigVAR.results allows us to visualize the position of λ̂. Ideally, we want it to be near the middle of the grid; if it is

at the boundary, increasing the depth of the grid may lead to improved forecasting performance.

plot(Model1Results)

5 10 20 50

3.
8

4.
2

4.
6

Value of Lambda

M
S

F
E

11



In this application, we find that our λ̂ is at the center of the grid as desired. If it were not, we could simply increase the

first parameter in the “gran” argument in ConstructModel.

3.2.2 Alternative Structures

Since Figure 4 shows that all series tend to exhibit a substantial degree of persistence, the Minnesota VAR might be a more

appropriate choice than shrinking toward zero.

Model1@Minnesota = TRUE

mean(cv.BigVAR(Model1)@OOSMSFE)

## [1] 1.024424

Out of sample forecast performance is substantially improved by imposing the “Minnesota VAR” penalty.

3.2.3 Visualizing Sparsity Patterns

We also allow the ability to view the sparsity pattern of the final coefficient matrix in the evaluation period.

SparsityPlot.BigVAR.results(Model1Results)

Sparsity Pattern Generated by BigVAR

Φ(1) Φ(2) Φ(3) Φ(4)

3.2.4 N-step ahead prediction

Finally, predictions can be obtained via the predict function. While n-step ahead predictions are available for VAR models,

we currently only allow 1-step ahead predictions for VARX models.

predict(Model1Results,1)

## [,1]

## [1,] -0.75937293

## [2,] -0.01849378

## [3,] -0.31100812

Estimation with fixed λ

In certain applications, one may initially estimate λ̂ by rolling cross-validation and continue to use that value as new data

becomes available. In such a scenario, it would not be desirable to fit a model with cv.BigVAR. We provide an alternative

12



function BigVAR.est which requires an object of class BigVAR and will provide a single estimate using all available data for

either a fixed grid of λ values or via a grid determined by the data (as is done in cv.BigVAR).

As an example, consider obtaining estimate

lambda <- Model1Results@OptimalLambda

Model1@ownlambdas = TRUE

Model1@Granularity <- lambda

BigVAR.est(Model1)

## $B

## , , 1

##

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.004212265 0.84945375 0.071498255 0.02375179 -0.027991946

## [2,] -0.002332942 -0.02553335 -0.008273462 0.08047007 -0.004736684

## [3,] -0.010033462 0.03383733 0.038584472 0.46494833 0.025839640

## [,6] [,7] [,8] [,9] [,10] [,11]

## [1,] 0.003736765 0.002798721 0.05107469 0.0000000 0.00000000 0.002129053

## [2,] -0.077192712 0.027693084 0.00000000 0.1178978 0.00000000 0.000000000

## [3,] -0.067544357 0.053245261 0.00000000 0.0000000 0.01520941 0.000000000

## [,12] [,13]

## [1,] 0.000000000 0.000000000

## [2,] -0.008513333 0.000000000

## [3,] 0.000000000 0.006299605

##

##

## $lambdas

## [1] 16.97018

VARX-L Estimation

If the user wishes to estimate a VARX-L model, first the series should be arranged such that the first k columns are

endogenous series and the remaining are exogenous series. After doing so, a list of VARX specifications needs to be passed

to constructModel. The list must contain two elements: k denotes the number of endogenous series and s the maximum lag

order for exogenous series. For example, if we want to forecast GDP and the Federal Funds Rate using CPI as an exogenous

series (with s = 4), we simply need to specify:

VARX = list()

VARX$k = 2 # 2 endogenous series

VARX$s = 4 # maximum lag order of 4 for exogenous series

Model1 = constructModel(as.matrix(Y), p = 4, struct = "None", MN = F, gran = c(25,

10), verbose = F, VARX = VARX)

Model1Results = cv.BigVAR(Model1)

Univariate Estimation

Univariate estimation (i.e. k = 1) is possible, however, many of the structures break down (e.g. Own/Other has no context

in this setting). Hence, the only structures that offer univariate support are Basic VARX-L, Lag Group VARX-L, and

Componentwise HVAR.

13



Table 3: Arguments for “Struct” in constructModel

Struct Argument Penalty VAR Support VARX Support Univariate Support

“Lag” Lag Group X X X

“Diag” Own/Other Group X X .

“SparseLag” Lag Sparse Group X X .

“SparseDiag” O/O Sparse Group X X .

“None” Basic X X X

“EF” Endogenous-First . X .

“HVARC” Componentwise Hierarchical X . X

“HVAROO” Own/Other Hierarchical X . .

“HVARELEM” Elementwise Hierarchical X . .

“Tapered” Lag Weighted Lasso X . .

References

Douglas Bates, Romain Francois, and Dirk Eddelbuettel. Rcppeigen: Rcpp integration for the eigen templated linear algebra

library. R package version 0.3, 1, 2012.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal

on Imaging Sciences, 2(1):183–202, 2009.

Prabir Burman, Edmond Chow, and Deborah Nolan. A cross-validatory method for dependent data. Biometrika, 81(2):

351–358, 1994.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8):

1–18, 2011. URL http://www.jstatsoft.org/v40/i08/.

Dirk Eddelbuettel and Conrad Sanderson. Rcpparmadillo: Accelerating r with high-performance c++ linear algebra. Com-

putational Statistics and Data Analysis, 71:1054–1063, March 2014. URL http://dx.doi.org/10.1016/j.csda.2013.

02.005.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear models via coordinate

descent. Journal of statistical software, 33(1):1, 2010.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and R Tibshirani. The elements of statistical

learning, volume 2. Springer, 2009.

Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, and Francis Bach. Proximal methods for hierarchical sparse coding.

The Journal of Machine Learning Research, 12:2297–2334, 2011.

14

http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005


Robert B. Litterman. Techniques of forecasting using vector autoregressions. Working papers, Federal Reserve Bank of

Minneapolis, 1979.

Yin Lou, Jacob Bien, Rich Caruana, and Johannes Gehrke. Sparse partially linear additive models. arXiv preprint

arXiv:1407.4729, 2014.

Helmut Lütkepohl. New introduction to multiple time series analysis. 2005.

Nicolai Meinshausen. Relaxed lasso. Computational Statistics & Data Analysis, 52(1):374–393, 2007.

Arnold Neumaier and Tapio Schneider. Estimation of parameters and eigenmodes of multivariate autoregressive models.

ACM Transactions on Mathematical Software (TOMS), 27(1):27–57, 2001.

William Nicholson, David Matteson, and Jacob Bien. VARX-L: Structured Regularization for Large Vector Autoregression

with Exogenous Variables. arXiv preprint arXiv:1508.07497, 2015.

William B Nicholson, Jacob Bien, and David S Matteson. Hierarchical vector autoregression. arXiv preprint arXiv:1412.5250,

2014.

Zhiwei Qin, Katya Scheinberg, and Donald Goldfarb. Efficient block-coordinate descent algorithms for the group lasso.

Mathematical Programming Computation, pages 1–27, 2010.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group lasso. Journal of Computational and

Graphical Statistics, 22(2):231–245, 2013.

Song Song and Peter Bickel. Large vector auto regressions. 2011. journal: arXiv preprint arXiv:1106.3915.

James H Stock and Mark W Watson. An empirical comparison of methods for forecasting using many predictors. Manuscript,

Princeton University, 2005.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

15


	Overview
	Notation and Overview of BigVAR Procedures
	The VARX-L Framework
	Hierarchical Vector Autoregression
	Penalty Parameter Selection

	Estimating VAR models with BigVAR 
	Constructing an object of class BigVAR
	Implementation
	Penalty Grid Position
	Alternative Structures 
	Visualizing Sparsity Patterns 
	N-step ahead prediction 



